SU(2) and SU(1,1) Algebra Eigenstates: A Unified Analytic Approach to Coherent and Intelligent States
نویسنده
چکیده
We introduce the concept of algebra eigenstates which are defined for an arbitrary Lie group as eigenstates of elements of the corresponding complex Lie algebra. We show that this concept unifies different definitions of coherent states associated with a dynamical symmetry group. On the one hand, algebra eigenstates include different sets of Perelomov’s generalized coherent states. On the other hand, intelligent states (which are squeezed states for a system of general symmetry) also form a subset of algebra eigenstates. We develop the general formalism and apply it to the SU(2) and SU(1,1) simple Lie groups. Complete solutions to the general eigenvalue problem are found in the both cases, by a method that employs analytic representations of the algebra eigenstates. This analytic method also enables us to obtain exact closed expressions for quantum statistical properties of an arbitrary algebra eigenstate. Important special cases such as standard coherent states and intelligent states are examined and relations between them are studied by using their analytic representations.
منابع مشابه
A Unified Analytic Approach to Coherent and Intelligent States
We introduce the concept of algebra eigenstates which are defined for an arbitrary Lie group as eigenstates of elements of the corresponding complex Lie algebra. We show that this concept unifies different definitions of coherent states associated with a dynamical symmetry group. On the one hand, algebra eigenstates include different sets of Perelomov’s generalized coherent states. On the other...
متن کاملCoherent States for Kronecker Products of Non Compact Groups: Formulation and Applications
We introduce and study the properties of a class of coherent states for the group SU(1,1) X SU(1,1) and derive explicit expressions for these using the Clebsch-Gordan algebra for the SU(1,1) group. We restrict ourselves to the discrete series representations of SU(1,1). These are the generalization of the ‘Barut Girardello’ coherent states to the Kronecker Product of two non-compact groups.The ...
متن کاملua nt - p h / 96 07 02 2 v 1 2 6 Ju l 1 99 6 Analytic representations based on SU ( 1 , 1 ) coherent states and their applications
We consider two analytic representations of the SU(1,1) Lie group: the representation in the unit disk based on the SU(1,1) Perelomov coherent states and the Barut-Girardello representation based on the eigenstates of the SU(1,1) lowering generator. We show that these representations are related through a Laplace transform. A " weak " resolution of the identity in terms of the Perelomov SU(1,1)...
متن کاملTwo-Photon Algebra Eigenstates: A Unified Approach to Squeezing
We use the concept of the algebra eigenstates that provides a unified description of the generalized coherent states (belonging to different sets) and of the intelligent states associated with a dynamical symmetry group. The formalism is applied to the two-photon algebra and the corresponding algebra eigenstates are studied by using the Fock-Bargmann analytic representation. This formalism yiel...
متن کاملAnalytical representations based on su(3) coherent states and Robertson intelligent states
Robertson intelligent states which minimize the Schrödinger-Robertson uncertainty relation are constructed as eigenstates of a linear combination of Weyl generators of the su(3) algebra. The construction is based on the analytic representations of su(3) coherent states. New classes of coherent and squeezed states are explicitly derived. ∗Permanent adress: LPMC, Faculty of Sciences, University I...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1997